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FOREWORD

This technical report discusses statistical aspects of electromag-
netic scattering by chaff clouds and was performed in-house at the Air
Force Avionics Laboratory under Project 7633, "Passive Electronic Counter-
measures,” Task 13, "Aerospace Vehicle Signature Control/Masking”, during
the period June 1973 to March 1974. The principal investigator for this
work was Dr. V. P, Pyati.
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TR APV

SECTION !
INTRODUCTION

The problem of electromagnetic scattering by chaff clouds can be
treated in two distinct fashions, namely, deterministic and nondeter
ministic or statistical. As night be expected, each has its own merits
and drawbacks. Deterministic methods predict the exact outcome in any
given situatior and are generally quite involved. 1In the case of chaff
clouds, there are two separate parts to the problem, the aerodynamic
and the elsctromagnetic, First one computes the orientations and pcsi-
tions of the individual dipoles in the chaff cloud using a generalized
six-degree-of-freedom-equations program and then the scattering be-
havior due to plane wave excitation determined by means of well-
documented standard techniques. 1In =ach case, a digital computer is
essential; but for the digital computer, such calcuistions would be
unthinkable. Furthermore, the effects of environment such as wind
shear and turbulence can be included as excitation parameters in the
aerodynomics calculations. Deterministic metheds in the present case
are time-~consuming and very expensive, and in view of the basic limita-
tions of computers such as finite memory, etc., the number of dipoles
that can be handled cannot posuibly exceed a few hundrod. These tech-
niques are being investigated by the Air Force Avionics Laboratory
through other coutractual efforts and will be reported later,

Statistical methods, on the other hand, are not concerned with any
cne particular sicuation; they predict in a probabilistic fashion what
might happen under a given set of circumstances. The methods are guite
generai oud apply to a variety of problems occurring in physics and
engineering. While deterministic methods are severely limited by the
nusber of dipoles that can be handled in the casc of chaff, there is
no such restriction with statistical methods; in fact, the larger the
nusber of dipoles, the moce accurate the predicticns become. This re-
port treats the problem o. electromagnetic scattering frowm chaff clouds
in a systematic and quartitative manner using statistical methods. The
material presented lere has been gathered from different sources and
put into self-contained form. Certa‘n mathematical derivations have
besn sixplified considersbly.




The plan of this coport is as follows. First, basic material on
prebability and randomn prccesses is introduced. Then, first and second
probability densitizs of chaff cloud scattering are derived starting
from first principles. Relevant averages and auto-correlation are
obtained. The physical significance of each random function is ex-
plained with illustrations. A self-consistent mathematical model for
chaff cioud scattering is developed. This will be a basis for further
analytical studies in such important areas as the effects of chaff echo
fluctuations on continuous wave, pulse doppler, and MTI radars.
Furthermore, we hope to combihe statistical and deterministic methods
in a judicious manner so as to be able to predict chaff cloud behavior

more accurately.




SECTION I.
PROBABILITY THEORY

2.1 DEFINITIONS
A random variable (r.v.) that is a function of time is called a

random process. Let us denote the r.v. by x(t) and che value attained

at an instant of time tk by

X = x(ty) (2.1)

Because of the random nature, it is meaningless to talk about the
value attained at a particular instant of time or the values observed
over a period of time. Then how does cne handle the problem? The
answer is, of course, by using the notion of probability which lends
to the precise definitions of certain distributions and averages which
can be predicted and observed with some measure of confidence. The
first and second order probability density functions (PDF) are defined
by

Py (x;t) dx = probability of finding x between
x and x+dx at time t

pz (xl,xz.tl,tz) dx;dx, = joint probability of
finding a pair of values
x in the ranges (xl,x*dxl)

at time t, and (xz,xz*dxz)

at time tz

These definitions can be extonded to still highier order PDF, but they
will not be néeded in our investigations. For convenience of writing,
the diffeorential eleme- .8 will not be carried aleag with P, and Py
but should always be uaderstood. In the definition of Pye it should
be understood that both X, and %, are random variables with the same
distribution pl. These two variables are considered statistically

indopendont or simply independent if

Py (X10X3ity0ts) = 0y (%10) Py (X20%2) (2.2)

H
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Lé.9)
= p, (x0ty1x50t,) ) (%5:t3)

and Py and P, fulfill the relations

fop (xpaty) 9% = (2.4)
[ o (Xpexpityaty) dx; = py (*1°%) (2.5)
fpy (xpitplxyity) ds, =1 | (2.0)

In relation to tho independent variable time t, random processes
are divided into two categories. These are stationary and nonstatiorary
processes according as to whether the statistics are independent of or
dependent upor t. The latter processes are oxtremely complex and will
not bo considered here. Stationary processes are further subdivided
into strictly stationary and wide-sense stationary. Por our purposes,
it suffices to consider only wide-sense stationary processes. What this
moans is the foliowing. The first order POF is indep. ndent of time and

she second order POF depoends oaly ca the difference toon, =T Hence

P
P
33




Such, of course, is not always the case. To handle the dependent case,
the notion of conditional probabllity is introduced. This is denoted
by pz(xz.tzlxl,tl) which gives the probability of finding X, in the
range (xz.x2 + dxz) at time tz given that x = X, at time tl. A vertical
bar separates the two sets of variables and the variables appearing on
the right side have already occurred and are considered no longer

random. One has, by definition

P, (X)sXpityaty) = Py (%20t20%p5t1) Py (xy0t1)

(2.3)
= Py (xpst1%00t2) Py (X20%2)
and Py and P, fulfill the relations
f P (xl;tl) dxl =1 (2.4)
[P (X:%23ty5t,) dxp = Py (X10ty) (2.5)
[P, (xp5tp0xg3t) dx, = 1 (2.6)

In relation to the independent variable time t, random processes
are divided into two categories. These are stationary and nonstatiorary
processes according as to whether the statistics are independent of or
dependent upon t. The latter processes are extremely complex and will
not be considered here. Stationary processes are further subdivided
into strictly stationary and wide-sense stationary. For our purposes,
it suffices to consider only wide-sense stationary processes. Wwhat this
means is the foliowing. The first order PDF is independent of time and
the sacond order PDF depends only on the difference tz-tl = T. Hence



p; (x5t) = py (x) | (2.7)

P, (xl,xz;tl,tz) =P, (xl,xz;t) (2.8)

for wide~sense stationary processes. i

The notion of homegeneity in time is sometimes employed to de-

scribe the foregoing random process. One should, of course, not lose
sight of the fact that x is still a function of time. From now on,
subscripts denoting the order of the PDF will alsc be omitted for con-

venience of writing.

The cumulative probability denoted by P(x) which gives the proba- i
_bility that - < x < a is defined by '

P(a) = Prob(-e<x<a) = [® p(x)dx (2.9)

from which it follows that

p(x) = 3zP(x) (2.10)
The complementary function

'Pc(x) = 1 - P(x) (2.11)

is also commonly used.
The expectation or expected value of a function f(x) is defined as

E(f) = [ £(x)p(x)dx (2.12)

with the most important ones being

E(x) = [ xp(x)dx (2.13)

E (xz) = xzp(x)dx (2.14)

5
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The variance and standard deviation (SD) of x become

2 2
. = = - E
var = 000 = £ (x7) ) (2.15)
8D = g(x) = /D(x)

If x represents voltage for instance, E(x) is the D.C. component,
E(xz) the mean square and D(x) the A.C. component. In relation to the

second order PDF the most significant quantity of interest is the auto-
correlation function B(T) defined as

B(t) = E (xlxz) = BE(x(t)x(t+tc))
/] X(X P (xl,xz;t) dx,dx, (2.16)

It may be noted that

k(o) = E (x?) (2.17)
and for large time lags, Xy and X, will be uncorrelated so that
2
B(«) = E"(x) (2.18)

which is again the D.C. component.

The auto-covariance K(t) and the normalized version R(t) are de-
fined by

Ket) = Bt)-B(«) (2.19)

R(E) = ghod (2.20)

It may be noted that -1 < R(1) < 1. Since the correlation function

gives the correlation between x(t) and x(t + t), the more rapidly x(t)

changes with time, the more rapidly R(t) decreases from its maximum

value of unity. This decrease way be characterized by a correlation

time to defined by

R (to) = 1l/e (2.21)

b am e SR e
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where e is the base of natural logarithim. The foregoing gives us a

clue that R(t) and the frequency spectrum must somehow be connected.
This indeed is the case and given by the Wiener-'hintchine theorem.

a
¢ (w) = fo R(t) ces wt dt (2.22)

o

R(t) = % [o ¢ (w)cos tw dw (2.23)

It is noted that the frequency spectrum ¢ end R “orr: a Fouiriev tr: is-

form pair. It will not always be pussible to integrate (2.22), and in
such cases, it is customary to take wmax = Zn/to.

Now let us introduce the concept of time averages. Suppose there
are great numbers of identical radio receivers (ensemble) turned on
gimultaneously. Let us also assume that the transients have died down
and steady conditions have been reached. The noise output voltages of
all the receivers are recorded over a long period of time T. At a
definite time tl’ we take the voltages x(l)(tl). x(z)
the average and the probability density function. This average is

(tl)...., compute

called statistical or ensemble average and this is what we have con-
sidered thus far. Statiocnarity in this context means the statistics
are the same regardless of the value of t. We might just as well take
the output of a single receiver and define a time average in the
customary manner (denoted by a over bar)

.
T - ,lrf‘fo %T [.p x(t)de (2.24)

. From an experimental veiwpoint, it is much eusier and wore con-

| venient to measure rime averages. Naturally we would like to know the
relation between time average x(t; and ensemble average E(x). Under the
so~called ergodic hypothesis, these two are equal. This identity wil)
be invoked here as a basis for comparing thcory and exporiment. The
time average auto-correlation is defined by




B(t) = x(t)x(t+1)

, T
= 11037 [ x() x (t+n)dt

taking.a single realization of the random process.

Under the ergodic hypothesis for correlation functions
B(t) = B(1)

2.2 FUNCTIONS OF RANDOM VARIABLES

Suppose
y = £(x)

and we want to determine the PDF of y. If the inverse function

X= f'l

(y)

is single valued then

-1 dx
Po(y) = py [f (y)] ke

wiere subscripts are used to distinguish different functions.
of multiple values, we first define single valued branches

~1 -1
xl = fl (Y)'xz = fz (y)se.o
and get the aore general formula

| dx.,

oy (%2) |oy

. dx;
pyc)') . px (xl) d‘;—

+* .

These idear are easily extended to functions of several random

vag.anles, For example, if x and y are random variables and

(2.25) |

(2.26)

(2.27)

(2.28)

(2.29)

In case

v s it o

(2.30)

(2.31)




reraass e vovn, st

u = u(x,y), v = v(x,y) (2.32)

then in terms of the joint density of x and y
= |3(x,y)
Pay (V) = By [x(u,v),y(u,n)] B0 (2.33)
where we have assumed the inverse functions
x = x(u,v) y = y(u,v) (2.34)

are single valued. For multiple values, we'proceed as in the case of
a single variable and obtain a result similar to (2.31). The last
member of Equation 2.33 is called the Jacobian of the transformation

X  x
3 3
g Ly o | (2.35)
u,v
iy ¥
su v

which is part and parcel of the transformatica. We must caution that
failure to include the Jacobian would lead to er:oneous conclusions re-
garxding PDF of the new variables.

2.3 RANDOM SIGNAL WITH UNIFORM PHASE

In order to provide a better feel for the material or probability
theory introduced in this chapter, let us consider, for example, the
engemble defined by the sinusolds

x(t,9) = A cos(wt+d) (2.36)

where A, w are fixed and ¢ distributed uniformly over a complete period.

This mexns 1
P(®) = 75 -modsn (2.37)

In practice, x(t,¢) may typically represent a scattrred field, with
A, w, and ¢ representiny the amplitude, carrier frequency, and phase,
respectively. The various piobabilitlies and expected values can be




R

o

determined in the following manner. First we invert Equation 2.36 to

obtain the two branches,

0 = cos'l(%) -ut, ¢ <m

0 = cos‘l(’fx) -wt+m, TS, <2m
Differentiating,

doy| _ |99, 1

= x| 177

(x2-12)
so that
(x) = 1
P > 2\ 172 (2.38)
'n (A -X )

Note that the result does not depend on w or t (stationary). As

X * A, p(x) becomes infinite, which seems co conflict with the funda-
mental fact that probability can never exceed unity. The answer lies
in realizing that p(x) by itself has no physical meaning unless it is
multiplied by the differential element dx, which together give the
probability of finding x in the range (x,x + dx). This wil) never
exceed unity. We conclude, therefore, that the signal level is most
likely to be found near +A or -A. If A were not a constant, one has

p(x) = %_ | —P(A)dA (2.39)

where p(A) is the PDF of A.

FPor the second order POF, all that is needed is the conditional
probability occurring in Equation 2,3. Since Equation 2.36 is a
deterministic function, once its value is known at t).' it is speci-
fied (functionally) for all other times. Thus

10
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A cos (wt2+¢)

[

A S YA
cos | wt + cos i (2.40)

with T = tz-tl, as usu.'.

Employing the delta function notation to denote the PDF of a
constant, we have

>l><
-

p (lexl;r) =[x, - Acos (un’+ cos'l(

)) (2.41)

It is much easier to compute ensemble and time averages, for example,

T

E(x) = [ xp(¢)d¢ = 0 (2.42)
-7

X = A cos (wt+d) = 0 (2.43)
AZ

X(X; = 3~ Cos wt (2.44)
AZ

We note in particular, the process is not only stationary, but ergodic
in the sense

E(x) = X (2.46)

E(x%) = X%, (2.47)

11




AU st e et PO

If the restriction that A be a constant iz removed, the second
relation will not be true in general, which means that tiie process
to be ergodic with respect to the auto~correlation function. Alsc
is not uniformly distributed the process is no longer stationary.

what follows, we will assume a uniform distribution for ¢.

12
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SECTION III
SCATTERING FROM CHAFF CLOUDS

3.1 GENERAL CONSIDERATIONS

The word chaff denotes a confusion type electronic countiermeasure
employing a large number of resonant dipoles. The dipoles are usually
in the form of very narrow aluminum strips or aluminum-coated glass
fibers cut to a length of about one-half wavelength at the frequency
of interest. Since the bandwidth of narrow dipoles is quite small,
one generally uses several cuts to obtain coverage over a wide band
of frequencies. When properly distributed in space, a chaff ¢loud may
occupy a large volume. At microwave frequencies a single chaff pack-
age contains literaliy hundreds of thousand dipoles.

For a distance R from the transmitter that is large compared to
the pulse width T, the number of scatterers or dipoles per resol.ution
cell is

M= n (1'—;"—9) ’ 2 '3.1)

wher2a n is the average number of scatterers per unit volume, 0 the
radar beamwidth, and c the velocity of light. At any instant of

A time, one may assume that the number of scatterers entering the range
cell jg equal to that leaving so tnat N can be considered more or less
constant and not a randon quantity. Making N random will complicate
the problem uwnnocessarily without altering the conclusions in any
substantive manner.

It is obvious that a very large number of elementary targets are
involved in the scattering process. Tho signal scattered by cach
elomentary target will huive random phase and amplitude becauvse:

(1) the orientation of the dipole may change due to rozation, and
(2) the distance between radar and the dipole center may change.
The phase of the returned signal is actually independent of the
orientation, but the amplitude is not. However, if the rotation
rates ara small compared to time of observation, the amplitude

13
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~hanges may be neglected. The dependence of return power on initial
wcientations can be included by suitably defined PDF for the angles.
The socond cause can affect amplitude as well as phase. The amplitude
changes are quite small and may be ignored. ‘'he phase changes are
most important and have been studied quite thoroughly. One generally
asgsumes that the phase distributions are uniform over a full cycle.
wWhat this means is that a single dipole may occupy any position within
the range cell with equiprobability. Also, the number of dipoles wich
any given phase will be the sane as those with any other phase. The
dipoles will also be assumed to be independently moving and the effects
of mutual coupling will be neglected. The effects of wind will be
examined to some extent. Since we are dealing with noncoherent
scattering, mass motion of the cloud with constant speed will have
negligible effects because all the individual dipoles are affected
equally. However, if there is relative motion between the dipoles
either due to turbulence conditions or some other reason, the return
signal will fluctuate proportionately. These fluctuation rates are
attributable to the doppler beats of the individual scatterers. Using
probabilistic methods we will now develop the first and second order
statistics. The material has been gathered from several sources shown
under references. Some of the derivations, especially second order

statistics, are obtained by simpler means.

3.2 FIRST ORDER STATISTICS

For a collection of N scatterers, the resultant complex signal S
is given by the vector sum of the individual returns and if one
neglects multiple scattering,

. N (X
s = vel® . kzl A ie() (3.2)

where A(k) is the amplitude and ¢(k) the phase of the kth scatterer and
for convenience the additional phase term due to the carrier frequency
hags been factored out. Our problem is then to find the probabilities
of V and O given the probabilities of A(k) and ¢(k). The above sum
repregents the familiar random walk problem in the complex plane.

14



- Regolving S into real and imaginary parts, we have

W
Re S =Vecos 9§ =x= 7§ A(K) o5 ¢(k) (3.3a)
k=1
Nk (k)
TmS=Vsing=y= ) A* sing¢ (3.3b)
k=1

(k3 and ¢(k), one might compute the proba-

Knowing the joint PDF of A
bilities of the individual terms and the sums by the methods outlined
in Chapter II. However, in view of a very powerful theorem called the

Central Limit Theorem, ther2 is no need to go about this the hard wuvy.

Central Limit Theorem:
Let x(l), x(2)

1+++ be N independent random variables all of which have
2
the same distribution with expectation i and variance ¢°. The dis-

tribution of the sum
N
s= ) x(¥ (3.4)
k=1

approximates normal for large N with E(S) = Np and D(3) = ﬂoz.

In other words

(5-Mw)?
1 20N
p(S) = e
JZaN o (3.5)

The beauly of the theorem is tiiat one necd not know or be concerned
with the individual distributions. It is not known precisely how large
N should be, but the conditions are almost always satisfied for chafi
clouds. Let us for a moment assume that all t.e dipoles are cut to
the same length (luter we shall account for multiple length) and
A(k’, o(k) are uncorrelated which is justified in view of earlier dis-
cussions, as a matter of fact they arc statistically independent. Let

the distribution for phises be

15




L R R R T T

ey

p(¢) = %; s ~MLHLT (3.6)

Now

,
. . . . NN
E[A(l)A(J)COS NES I ¢(J)] _e(a )6

i, . . 3.7 '
6% is Kronecker delta ( ) i
i
and ;
E[A(‘hms &k)] - E[A(“] E[cos¢(k)] 5
.
= 0 ;
Invoking the central limit theorem
2
- X
1 2o~
p(x) = e (3.8)
SO oo
e |
E :
W3 | . . . 2 N 2
S { where, since the amplitudes have identical PDF, 0 = 3 E(A") and a

similar expression for Y, of course. To proceed further, we need the i
joint PDF of X and Y. 1In general, it is not possible to write down
i the joint density from a knowledge of marginal densities. An excep-
tion to this is the normal process where all crder densities are

normal. For the case of two variables, with zero mean and identical

variances Ga, the result is particularly simple,

R
v(,.\:.\‘) @ 1 177 exg - }“ﬁ;'g\\“t\i"

2ﬁoz( 1-a')

where the correlation coefficient .s

BNY) (5.9}

[1:(;5)x;(r:) ] "
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From Equation 3.3, we note that E(XY) = 0, so that

B il

'XZ*YZ
7

e 29

P(X,Y) = —‘7—"

2T

(3.10)
= p(X)p(Y)

Introducing polar coordinates

1/2 i
v (xBy?) T e =t (X))

we have, using Equation 2.33

<

T
p(V,0) = J-e ° (3.11)
0

and

2 <>
I, = 20° = NE (A")

The marginal densities are obtained by integration as usual.

p(e) = %—; » -HSO<H (3.13)

The resultant phase is uniform #ad the dastribution for V is called
Rayleigh or X with two degrees of freedom, These results have been
known for about 80 years and apply to many kinds of scattering situa-
tions. The amplitude distribution of the elemontary signals duos not

17
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enter into the picture and it is therefore quite erroneous to assume

that the dipoles in a cloud should have spherically uniform orienta-

tions to arrive at the above statistics. The requirement of uniform

phase is essential, however. For nonuniform phase distributions, the

analysis is very similar, but the results become quite complicated.

The important expectations in the present case are

The cumulative distribution of V is

vrl
E(V) = ——>
(3.14)
E(vE)- 1,
E(8) = 0
(3.15)
E (62) = n2/3
V1
P(V) = l-e e (3.16)

From a practical viewpeint the radar cross section (RCo) of the

cloud, defined by 1 = V2 is more significont. One has

and

-1/1
€ o -
P = Sgmem | 120 (3.17)
(o]
SN
P(L) = Loe (3.18)

The distribution is called Rayleigh poscr or xz with two degrees of

freedon.

It is easily checked that

18
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One normally expresses the SD as a percentage of the expectation which

in the present case is 100%. A j;lot of the distribution of V and I are
shown in Figures 1 and 2. (ObserVe that the most probable value of RCS
is zero.) The median is 0.7 I, and the signal intensity will be ‘one

"half the average level 39% of the time.

The results obtained thus far are quite general and let us now
specialize to chaff clouds. All that remains to be done is to relate
Io to the dipole scattering properties. For a half wave dipole in-
clined at angles § and ¢ in a spherical coordinate syscem, the back
scattered amplitude A for a plane wave traveling in the z direction

can be approximated by

A~ Vo sin’ 8 cos? ¢ (3.20)

where in terms of wavelength A, the broadside RCS o, = 0.89A2.

What we ndw need is the joint PDF p(6,¢) describing the orienta-
tions of the dipoles. It depends upon the rotation rates, en.ironment,
etc., in a complex fashion and no serious attempt has ever been made
in this direction. One therefore makes the simplifying a priori

assumption that all orientations are equally likely so that

p(e,9) = Sl 0L (3.21)
- 0<@<m
whence
No
- 2
I, = NE (A ) = _39. (3.22)
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This is the so-called tumble average RCS of the chaff cloud. In case
of orthogonal polarization reception, the above expression should

be divided by three. For chaff clouds that contain several cuts of
dipoles, we simply take
Io = N1°1 + N2°2 ... (3.23)

where the N's refer to number and O's suitably defined averages.

3.2.1 Steady Target Immersed In Chaff

The determination of the radar return of an aircraft flying
through a chaff corridor is of considerable practical importance. The
radar cross section of an aircraft changes with aspect considerably and
there are no reliable statistics on the subject. We will therefore
consider the aircraft as a steady target and determine the combined
statistics of aircraft plus chaff. This will be at least first step
toward understanding a more difficult problem. If the RCS of the
steady target is m2 Io' we have for the probability densities

2

. 2 Vo y -2Vm
(m + 'f—') '—/I-_— cos @
Ve 0 0
p(V,8) = 7T e (3.24)
o}
Integrating over O
2
At g_)
2Ve 0 . 2Vm 25
p(V) = J 1—) (3.25)
Io 0 /1—0'

and also

()
p(l) = e 0 Jq (iZm /{—-) (3.26)
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fading of radio signals due to mixed propagation paths.

known integrals,

B/a ®
S — = ey, (i2/BX)dx
¢
B/a
S | 20% ¢+ 4ag + g2
43

= j': x2e™0X 3, (iZfB—f)dx

we get
E() = (1em?) (1)

which could have been guessed and

e (12) - Ii (2 + an? + n%)

1/2
sb = 1 (1+ 2m%)
; 172
f sp_ . (1 .+ 2n?)
§ ( 5 1l « mz
g : /Z/m, for m°>>1
1

) _“..q...w,.«-.-«»ﬂlw
~
[ 3]

where Jo is zeroth order Bessel function. The distribution for phase
is quite complicated and will not be given here. The above is called
the Rice~Nakagami distribution originally discovered in the study of

Using the

(3.27)

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)

e i er e n
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summarizing we note that RCS statistics of a chaff cloud with

uniform distribution of dipoles follow X2 distribution with two degrees
of freedom. If there is a nonfluctuating targ«: in addition, we have a
Rice-Nakagami distributicn. The fluctuations are quite large (100%)

in the first case and the presence of a strong steady target decreases

the fluctuations.

3.3 SECOND ORDER STATISTICS

Whereas the first order statistics tell us about the magnitude
of fluctuations, information regarding the rates of fluctuations is
obtained from the second order statistics which give the probability
of jointly finding two values of a random variable at different times.
Analogous to Equation 3.3, we define the joint density

p (Xl,xz;tl,Yl,Yz;tz) (3.33)

where Xl = X(tl), X2 = Xz(tz). etc. First, we assume the process is
stationary so that time appears as only the difference T = tz-tl'
Also since X and Y are statistically independent, we have

p (XI,XZ;YI,Yz;r) = p (Xl,xz;r) P (Yl,YZ;T) (3.34)

We first cbserve that the marginal densities of Xl and X2 are
normal and thus given by Equation 3.8. Therefore, analogous to Equation
3.9 we have

2
1

2

X 2

-ZgX1X2+X
Io (l-gz)

172
nlo (l-gz)

exp -

(3.35)

p(xl.xz;r) .
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where instead of the correlation coefficient, we have the correlation

function of the process given by

(3.36)

By symmetry, identical expressions are valid for the Y-component.
More will be said about g(t) later, but now a few observations are in
orasr. At T = 0, the two variables are fully correlated and at the
other extreme when T = ®, the variables are independent. In mathe-

matical ts

P (X:%;30) = p (X)) 6 (X;°%))

(3.37)

P(X2) 8 (X7%p)

P (XsX%5) =P (X)) P (Xp) (3.38)

Detexrmination of the various densities and expectations now becomes
a routine matter although the algebra hecomes very tediocus at times.

Pixst we introduce polar-coordinates




to obtain

V1V

2
1

%-nglv2 cos ((0;-0,)

2
I0 (1-g )

VIi+V

exp -

P(Vy:V2) P (8109;)

the amplitude V and phase 6 are correlated.

2
p (V1V00108237) w22 (1-67)
o

Since the above cannot be written in the product form

§ Integrating over the angles
g (V voie) 4V1V2 S ‘ ZgVIV
; PAUY T2 ;rz;j“rs' o| *T (1.
4 o778 o\""8
N Vf#V%
exp - -
o (147).
-
-

§ 25

L

(3.39)

T D AN

C b v e iron o



2
.
3

gt s i

B e

If we denote the ratio V2|V1 by Q

() - 2% [
»Vas T = —— 1
AT A Ter Il B e

vE (1+q?)

I0 -g

and

31) = »Vo31) dV
p(Q;1) fo P (Q 2 T) 2

using the integral -

-

[ xe™®X g (igx)dx =

Qa
3/2
; (o?) "

the distribution is found to be

(3.41)

(3.42)

(3.43)

(3.44)
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and is plotted in Figure 3. Note that as g + 1, it peaks at the center
like a delta function. Similarly one has for the intensities

L+ 1
eXp - | T Iy 1"
I..1 ) IO (l-g ) J . 28 1°°2
p( 1°72%) ° K o | 7
I, \1-8 ) I (l-g )
Oi11»12<” (3.45)
and for the ratio 12/11, denoted by W,
2
p(W;t) = (1-g%) (I*W%n (3.46)
[aem?-ag ]

O<Wee

This distribution is shown in Figure 4. To get the joint density for
8, we integrate Equation 3.39 over v1 and vz. Pirst we introduce
polaxr—-coordinates

v1 = p COS ¥, V2 = p sin y

so that
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sin 2y dy
® 3 pz(l-y sin 2y)
] o7 exp - dp
0 I, (1-g )
with Y = g cos (61-62)
i

Noting that

© 2,2 i
3 ~a®X 1

f X“e a dx = ———3- !

(o] 2a i

|

i

the above becones :

B r s

1 B P

1.6 ™2 in 2 a4
- Y]
n o (l-y sin 29)

BRI R s or g

by .
- 1- sin X "
__§_ / 3 dx

&n (1-y sin X)

Lgta JRt
Bng dy o (T-y sin X)
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and using the result

I" dx _ 1+ 2 sin’ly
o (I-y sin X) (1 2) 1/2
-y

wz finally have

(3.47)

wherxe

y = glt) cos (91'92)

'“iel’eziﬁ

A more convenient expression is obtained by introducing a new set
of variables

u . 61-02, vV s 82. with the limits

~u<UeY<T AN ~ncyLn

30




The total probability for u is

pw;) =[5 p(u,vitidy

where care must be exercised in choosing the limits of integration.

Manipulating the inequalities for u and v, we note

a = Max(-m,-m-u)

g = Min(w,m-u)

which leads to two possibilities

Hence

2
1- 1
plust) = =&~ (2rn - |u])
dn® (l-gz cos® u)

Cos u o1
+ ;Ef 2 —573 { % + sin " (g cos u)
(l-g cos u) .

n‘lliﬂiZl (3.48)

n

Cevatent 40




A very useful alternate form due to Middleton(4) is

pluzr) = 2m=lul | g gﬁ F(u)

47
where

[% + sin'l(g cos u)] sin u

; 172
(l-g2 cos2 u) !

F(u) =

The PDF of u is plotted in Figure 5. This completes the derivation
of first and second order statistics for the amplitude, intensity
(RCS) and phase of the scattered signal by a chaff cloud.
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SECTION IV
CORRELATION FUNCTIONS

4.1 CLOUD CORRELATION FUNCTION g(t}
The correlation function g(T) defined by Equation 3.36 is about the
most significant quantity characterizing the second order statistics.

It is governed by the dynamics of the chaff cloud itself and only in

special cases is it posscible to establish the connection bhetween the :
movement of chaff dipoles and g(T). Now if A{k), ¢{k) and Aék), ¢ék) §

denots the amplitude and phase of the kth scatterer at times tl and

t2 = tl + T, then one has for the total field

: N
X, = 7} Afk) cos ¢§k) 4.1
k=1

N

~<
Hi

(k) (k)
A COs

Simple calculations show that

E(x7) "'];E(Af) (4.3)

) =§E(A§) (4.4)

assuming identical scatterers. Furthermore

NN, .
E(XX,) = 1§1 3-2-1 £ (A{ )Agj))s (cos (1) cos ¢§3)) (4.5)

Since the scatterers are independent

E (cos ¢{i) cos @%j)) =0, 1i¢]j

i
!
f
i
§
i
{
!
",
|
£
g
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contributions occurs only for i = j. Therefore

2E (AIAZ) E (cos ¢1 cos ¢2) /

()] )

g(t) =

(4.6)

if we assume Al = Az which is in keeping with the understanding that
amplitude changes are not significant. 1In terms of the change in
phase between the two instants of time, let

s a1 A _ e 14, Bt

Y = ¢2'¢1’ -odP<o (4'7)

so that
g(t) = 2E [cos ¢, cos (w+¢l)]

= E(cos ¥) (4.8)

An identical result will be obtained by considering the Y-component.
If a dipole moved a distance § in the direction of tha radar during
the time interval 1, then

Ve (4.9)

where A is the wavelength. If all directions of motion are equally
likely arising from, say, an isotropic turbulent wind field, then
the joint density is

P(V,0,8) = 3= sin 0g(V)

0<V<em, 0<0<m, 0<$<2n (4.10)
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where V is the speed and 8, ¢ suitably defined angles with 0 = 0 de-

noting direction away from the radar. Also note that

fm q(V)dv = 1 (4.11)
(o]

Since £ = VT cos 8, we have

r(EIV,0,9) p(V,0,¢)

P(&,V,6,4)

8§ (€-Vt cos 8)p(V,0,9) (4.12)

and therefore

. -
sin 8d8 [ q(V)§(£-Vt cos 8)dV (4.13)

ple)de - S8 J
0 0

Following Siegert,(s) we express the delta function as a Fourier

integral
® o
§(E-VT cos 6) = é§ | duetu(&-Vt cos 6) (4.14)
-0

so that, after integrating over 8,

PO = 35 duelE [ avq(y) shofuVr)
' . Bifur)

e ———n——— 1 o =




——
#

and using Equation 4.9
w  AMAY ;
A 4 sin(uVrt “
ply) = | due [ dvq(V) --é}._l. (4.16)
3% e 0 Byt
and
g(t) = E(cos 9) = [ cos ¢ p(y)dy (4.17)
:
%
The integrations over U and ¥ can be carried out in the following '
manner.
® ipAy ,
A 7 sin(uVr) !
;1;7 {idudU)COSwe G |
= A f? cos ¥ cos ”w) SINCRVT) gy ;
'2_;2' 5 I (uvt) i
%
o CoA O sin@ve) 1A 3
o SRR L v | eos (10 )
*cos(l-%’% w]
e - A sin(pVr ui
y | & fod“—ifé’r—)'[‘s(l'ﬁ)
] WA 4.18)
3 ! ¢ 4 (1 - ﬁ) (4.
: . Sin(dnVr/d)
—3=Vt7A
o
g | »n




and finally

800 = [ e SR (4.19)

We may now make the following observations. If a chaff cloud is
measured simultaneously at different frequencies and g(1) is plotted
against T/A' all the curves should coincide. From a frequency domain
viewpoint, it means the doppler beats are proportional to the carrier
frequency which is a well known fundamental result. By inverting

Equation 4.19

2 o«
q(v) = A (4n) ;o tg(t)sin(4nVt/A)dr (4.20)

which may be utilized to estimate the speed distribution from the mea-

sured value of g(1).

4.2 SIGNAL CORRELATION FUNCTIONS
Using the definition (Equation 2.16), we have for the intensity

(RCS)

B(I,7) = [] LI, p(1,,1,:0)dl,dl,
2

= Iﬁ (1*32) (4.21)

and the auto-covariance

R(I,x) = gz(t) (4.22)
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This is an interesting result because it provides an indirect method
of determination g(t) from the RCS auto-correlation function. The
latter can be determined experimentally using a noncoherent pulse
radar. For the amplitude we have

B(V,1) = [[ V,V, p(V;,V,;1)dV,dV,
0

using Equation 3.40, and introducing new variables

v, = t1/2

. cos(¢/2), V, = t1/2 sin(e/2)

we have

1 T .2
B(V,7) = — [ d¢ sin® ¢
413 (1-g7) )

2
2
,(1e°) 301
—g— [ sin® ¢ 55 d¢
(o]

by use of Equation 3,43, and letting A = (1 - 92 sin2 ¢)l/2.
Using elliptic integrals

B(V,1) = ;3» [ 2k - (187) K(g)] (4.23)
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where K and E are complete elliptic integrals of the first and second
kind with modulus g. Furthermore, the auto-covariance is

- 2
R(V,) = 2E(g) i_ﬂg%'g ) K(g) (4.24)

To determine B(8,T) consider the second moment of u = (61-62)

[

E(uz)

E (91'92) ’

2t (02) 26 (0,0, )

#

- 2B(e,1) (4.25)

£

frox which

2 .2
B(6,1) = §_ - i‘-g“_-L (4.26)

Now from Equation 3,49

2n
E (uz) = uzp(u;t)du
=21

2n 3
.1 [o dx(x"- §?) 1+g “H F(X)] (4.27

40

ITh




Pnewap s ek

L aa L B

with

['% + sin'l(g cos X)] sin X

F(X) =
(1 2 2 )1/2
-g® cos” X
The first term gives
2m 3
[o(x 3}5) ax = &’ (4.28)
o]

For the second term we integrate by parts xrepeatedly and find

that

+ { sin'l(g cos X)] dX (4.29)

41

Une P T 2

- e

TR e A e IRNARY s+ SN



oot oA
e T

S ialing .
et e W T 4

S AT L G L

S SRS S R B 0 e 5 i oy v B S 8 R 8 ot stz cbio i o B o

The final integrations can be carried out by expanding the inverse
sine functions into power series and integrating term by term. First we

note below the known results

nlig cos X) = :E: (Zk)‘(g cos x) k1
o 2 XDk

0

2 2k 2 2k+2
[Sin’l(g cos X)] = Z 2 (k‘) {g cos X)
=0 (2k+1) ! (k+1)

2%
[ (cos )?¥hax = 0= [ X(cos X)
C Q

2k*1dx

2m c !
[ (cos x) 2k 24x - -zéggbiil;-T-z

0 2 t(k+1) .}

" 2ke2yy , _ 2n°(2ke2)!

X{cos X) -
° 225 key 137

Sy o
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Then, it follows that
27 -1
[ sin “(g cos X)dX = 0
o
2m -1
J X sin “(g cos X)dX = 0
o
«©
27 . 2n
[ sinl(g cos x) %ax = T :E: g
o n |
n=1 v
%
?ﬂ 1 1r2 o |
x -n‘ . 2 = gu H
: si (g cos X) dXx Z K-I—Z— i
n=1

Rkt

Substituting the above result in Equation 4.29 we have finally

E (u) =§_’§E- rrsin'lg‘(sin;‘l g)z

s 2 b e Bl Sl e

o

2n
1
DY f;—- (4.30,

ne=l

and

2
-

[ﬂ sin'd g o (sin'1 g)

o e

é E (9193) =

o
I

(4.31)

AR T s e
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The normalized phase auto-covariance beccmes

2
3 R(0,T) = % 51n“__& + ( sin _ g )
: 2n
; L :E: g (4.32)
an ;7—

4.3 NUMERICAL RESULTS
The problem of determining the speed distribution of the dipoles
in a chaff cloud under a given set of environmental conditions is

2 extremely complex and sc far no serious attempts have ever been made

} ; in this direction, We will therefore be content by presenting results

for an assumed distribution. For example, if all the dipcles have

the same speed Vo'
q(V) = 3 (v-vo) (4.33)

and from Equation 4,19

sin (4nVOT/A)

gLe) = Tav I/ (4.34)

The auto-covariance function for the intensity becomes

>
sin (4nvof/A) - o
! RO = | v (4.35)
: 0

and the frequency spectrum is

Byt

W

S(1,u) o 5 ( l- _xi ) ol 2uy (4.30)
Q2
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where 41rVo

The spectrum thus contains frequencies up to 4 Vo/x which is no
more than the doppler beat between dipoles moving directly into and away
from the radar beam. It should be emphasized that we are talking of
frequency spread due to, for example, turbulence and not the conven-
tional doppler frequency due to average motion of the entire cloud.

The latter cannot be measured by a noncoherent system because the

phase information is lost. For the special value of g(T) given by
Equation 4.34, the three auto-covariance functions are plotted in
Figure 6 and Figure 7 shows typical experimental results obtained in

a recent AFAL contractual effort.(s) Although the data in the two
figures are unrelated, one notices certain trends. For the type of
chaff payloads employed, the correlation times were found to be in the
order of 10-20 milliseconds which means that the frequency components

are around 50-100 Hz.
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SECTION V
CONCLUSIONS AND RECOMMENDATIONS

This effort accomplished the task of obtaining mathematical
expressions for the first and second order statistics of electro-
magnetic scattering from chaff clouds. These results can form a basis
for studying the effects of chaff clutter fluctuations on different
types of advanced radars in a statistical sense. For example, the
starting point in the case of noncoherent MTI with a single delay line
canceller is the conditional probability for the amplitudes given by

iy L)

t

2v, ;[ Y ]
L 1 .
1, (18%) ° [ 1, (18%)

2. 2.2
[ Vate vy

exp - f -~ ———a—
'_I° (e ) (5.1}

} where 1 is the interpulse period and Vl and V2 are the amplitudes

for two successive pulses. The uncancelled output is |V2-Vl|.

Herein lies the physical significance of g. If g = 1, there will

be perfec. cancellation. A quantitative study can now be made in terms
of the correlation functions of chaff and the target as parameters.
Details of this and similar studies will be presented in subsequent

reports.
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